- coordinate derivative
- Макаров: производная по координате
Универсальный англо-русский словарь. Академик.ру. 2011.
Универсальный англо-русский словарь. Академик.ру. 2011.
Derivative (generalizations) — Derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Derivatives in analysis In real, complex, and functional… … Wikipedia
Derivative — This article is an overview of the term as used in calculus. For a less technical overview of the subject, see Differential calculus. For other uses, see Derivative (disambiguation) … Wikipedia
Derivative (examples) — Example 1Consider f ( x ) = 5:: f (x)=lim {h ightarrow 0} frac{f(x+h) f(x)}{h} = lim {h ightarrow 0} frac{f(x+h) 5}{h} = lim {h ightarrow 0} frac{(5 5)}{h} = lim {h ightarrow 0} frac{0}{h} = lim {h ightarrow 0} 0 = 0The derivative of a constant… … Wikipedia
Covariant derivative — In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a… … Wikipedia
Harmonic coordinate condition — The harmonic coordinate condition is one of several coordinate conditions in general relativity, which make it possible to solve the Einstein field equations. A coordinate system is said to satisfy the harmonic coordinate condition if each of the … Wikipedia
Lie derivative — In mathematics, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of one vector field along the flow of another vector field.The Lie derivative is a derivation on the algebra of tensor fields over a… … Wikipedia
Generalizations of the derivative — The derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Contents 1 Derivatives in analysis 1.1 Multivariable… … Wikipedia
Material derivative — The material derivative[1][2] is a derivative taken along a path moving with velocity v, and is often used in fluid mechanics and classical mechanics. It describes the time rate of change of some quantity (such as heat or momentum) by following… … Wikipedia
Directional derivative — In mathematics, the directional derivative of a multivariate differentiable function along a given vector V at a given point P intuitively represents the instantaneous rate of change of the function, moving through P in the direction of V. It… … Wikipedia
Exterior derivative — In differential geometry, the exterior derivative extends the concept of the differential of a function, which is a form of degree zero, to differential forms of higher degree. Its current form was invented by Élie Cartan.The exterior derivative… … Wikipedia
Upper convected time derivative — In continuum mechanics, including fluid dynamics upper convected time derivative or Oldroyd derivative is the rate of change of some tensor property of a small parcel of fluid that is written in the coordinate system rotating and stretching with… … Wikipedia